Self-reciprocal Polynomials Over Finite Fields

نویسندگان

  • Helmut Meyn
  • Werner Götz
چکیده

The reciprocal f ∗(x) of a polynomial f(x) of degree n is defined by f ∗(x) = xf(1/x). A polynomial is called self-reciprocal if it coincides with its reciprocal. The aim of this paper is threefold: first we want to call attention to the fact that the product of all self-reciprocal irreducible monic (srim) polynomials of a fixed degree has structural properties which are very similar to those of the product of all irreducible monic polynomials of a fixed degree over a finite field Fq. In particular, we find the number of all srim-polynomials of fixed degree by a simple Möbius-inversion. The second and central point is a short proof of a criterion for the irreducibility of self-reciprocal polynomials over F2, as given by Varshamov and Garakov in [10]. Any polynomial f of degree n may be transformed into the self-reciprocal polynomial f of degree 2n given by f(x) := xnf(x+x−1). The criterion states that the self-reciprocal polynomial f is irreducible if and only if the irreducible polynomial f satisfies f ′(0) = 1. Finally we present some results on the distribution of the traces of elements in a finite field. These results were obtained during an earlier attempt to prove the criterion cited above and are of some independent interest. For further results on self-reciprocal polynomials see the notes of chapter 3, p. 132 in Lidl/Niederreiter [5]. 1 The rôle of the polynomial x n+1 − 1 Some remarks on self-reciprocal polynomials are in order before we can state the main theorem of this section. • If f is self-reciprocal then the set of roots of f is closed under the inversion map α 7→ α−1 (α 6= 0). Universität Erlangen-Nürnberg, Informatik I, Martensstr. 3, D-91058 Erlangen

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Properties of Generalized Self-reciprocal Polynomials over Finite Fields

Numerous results on self-reciprocal polynomials over finite fields have been studied. In this paper we generalize some of these to aself reciprocal polynomials defined in [4]. We consider the properties for the divisibility of a-reciprocal polynomials, estimate the number of all nontrivial a-self reciprocal irreducible monic polynomials and characterize the parity of the number of irreducible f...

متن کامل

On the parity of the number of irreducible factors of self-reciprocal polynomials over finite fields

Using the Stickelberger-Swan theorem, the parity of the number of irreducible factors of a self-reciprocal even-degree polynomial over a finite field will be hereby characterized. It will be shown that in the case of binary fields such a characterization can be presented in terms of the exponents of the monomials of the self-reciprocal polynomial.

متن کامل

On the Hansen-Mullen conjecture for self-reciprocal irreducible polynomials

Let q be a power of an odd prime and let k, n ∈ N such that 1 < k ≤ n. We investigate the existence of self-reciprocal irreducible monic polynomials over Fq, of degree 2n and their k-th coefficient prescribed.

متن کامل

Polynomials over Finite Fields and Applications

Self-reciprocal irreducible monic (srim) polynomials over finite fields have been studied in the past. These polynomials can be studied in the context of quadratic transformation of irreducible polynomials over finite fields. In this talk we present the generalization of some of the results known about srim polynomials to polynomials obtained by quadratic transformation of irreducible polynomia...

متن کامل

Generalized reciprocals, factors of Dickson polynomials and generalized cyclotomic polynomials over finite fields

We give new descriptions of the factors of Dickson polynomials over finite fields in terms of cyclotomic factors. To do this generalized reciprocal polynomials are introduced and characterized. We also study the factorization of generalized cyclotomic polynomials and their relationship to the factorization of Dickson polynomials.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001